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Abstract

A spectral element method is developed for solving the two-dimensional Helmholtz�s equation, which is the equation

governing time-harmonic acoustic waves. Computational cost for solving Helmholtz�s equation with the Galerkin finite

element method increases as the wave number increases, due to the pollution effect. Therefore a more efficient numerical

method is sought. The comparison between a spectral element method and a second-order finite element method shows

that the spectral element method leads to fewer grid points per wavelength and less computational cost, for the same

accuracy. It also offers the same advantage as the finite element method to address complex geometry and general

material property. Some simple examples are addressed and compared with the exact solutions to confirm the accuracy

of the method. For unbounded problems, the symmetric perfectly matched layer (PML) method is applied to treat the

non-reflecting boundary conditions. In the PML method, a fictitious absorbing layer is introduced outside the truncated

boundary.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

Time-harmonic wave propagation, either elastic waves or electromagnetic waves, is a common phe-

nomenon that appears in many applications such as acoustic wave scattering from submarines [1], noise

reduction in silencers and mufflers [2], earthquake wave propagation [3], light distribution in radiative

optical fiber devices [4], fluid–structure interaction [5], sea-wave propagation [6] and radar scattering [7].

The time-harmonic wave propagation is governed by Helmholtz�s equation. In other words, boundary

value problems governed by Helmholtz�s equation are abundant in many branches of science and tech-

nology such as acoustics, seismology, optics, geophysics, electrodynamics and fluid dynamics.

Different numerical approaches have been developed to address boundary value problems governed by
Helmholtz�s equation. Formany years the classic approach to solve this equation has been based on boundary
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element method [8]. These methods are based on integration over the boundary of the problem and can

naturally address unbounded problems. The disadvantages of boundary element methods are the restriction

to linear problems in homogeneous and isotropic media, and their difficulty with characteristic wave numbers

in the interior problems [9]. Furthermore, from the numerical point of view, boundary element methods lead

to ill-conditioned systems, which are expensive to solve, especially for three-dimensional problems.

Finite element methods have recently become more popular to solve the Helmholtz�s equation [10].

These methods do not have the restrictions of boundary element methods, but need special treatment for

unbounded problems [11]. These methods lead to sparse matrices, which can be solved iteratively. The cost
comparison of finite element and boundary element methods shows that finite element methods are

comparable with boundary element methods for solution of acoustic scattering problems [12].

A significant weakness of the Galerkin finite element method for solving Helmholtz�s equation is the so-

called pollution effect [13]. This terminology indicates that for higher wave numbers more nodes per

wavelength are needed than for lower wave numbers to achieve the same solution accuracy.

In order to improve the efficiency of the classical Galerkin approximation, some modifications have been

developed [14]. These modifications aim to minimize the pollution effect caused by spurious dispersion of

the numerical computation [15]. The most common approach is the Galerkin/least-squares (GLS) method,
which is based on appending residuals of the Euler–Lagrange equations in the least squares form to the

standard Galerkin formulation [16]. Those additional terms are constant dependent. Finding the optimal

GLS constants is a challenge [17].

In this work, a two-dimensional spectral element methods is investigated as an alternative to finite element

methods. The spectral element method has polynomial basis functions of degreeN in each spatial dimension,

and integrals over the elements are evaluated using numerical quadrature [18]. Spectral elementmethods have

been shown to be efficient for elliptic problems in other applications such as fluid mechanics [19]. For

Helmholtz�s problems, it is shown herein that it requires fewer grid points per wavelength compared to finite
element methods. This translates into smaller systems to solve for the same accuracy. Although the resulting

smaller matrix is less sparse compare to the resulting finite element matrix, it requires less computational time

to be solved iteratively, provided that an appropriate preconditioner is applied. High wave numbers are

investigated in this work to demonstrate the range of applications of the spectral element method.

As mentioned before, a special treatment is needed to address unbounded problems when using finite el-

ement methods. This work does not focus on the different approaches for solving unbounded problems, but

demonstrates that methods that worked well for finite element methods also work for spectral element

methods.A recently developed approach,which is called perfectlymatched layer (PML), is applied here [20]. It
is based on introducing an absorptive layer outside the truncated boundary to damp all the waves entering it.

The reminder of this paper is organized as follows. Section 2 introduces the model problems investigated

herein. Section 3 is devoted to details of the numerical approximation. The spectral element discretization,

numerical quadrature and assembly of the resulting matrix are discussed in this section. In Section 4, the

numerical results for three sample problems are reported. The investigation of the efficiency of the method

for sample problems is discussed in Section 5. Finally a conclusion is given in Section 6.
2. Model problems

2.1. Governing equation

Linear wave propagation in a medium is described by the wave equation

1

c2
o2/ðx; y; tÞ

ot2
�r2/ðx; y; tÞ ¼ F ðx; y; tÞ; ð1Þ
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where / is the velocity potential, c is the wave propagation speed and F is a source function. The velocity and

pressure in the medium of interest are derived from the velocity potential by the following two relations:

uðx; y; tÞ ¼ �r/ðx; y; tÞ; ð2Þ
pðx; y; tÞ ¼ q
o/ðx; y; tÞ

ot
: ð3Þ

By assuming a time-harmonic solution for the velocity potential, /ðx; y; tÞ ¼ uðx; yÞeixt, and a time-har-

monic source function F ðx; y; tÞ ¼ f ðx; yÞeixt, the wave Eq. (1) reduces to Helmholtz�s equation

r2uðx; yÞ þ k2uðx; yÞ ¼ �f ðx; yÞ; ð4Þ

where k is the wave number defined as

k ¼ x
c
; ð5Þ

and x is the angular velocity.

Clearly the solution of (4) requires boundary conditions. Three different boundary conditions are in-

vestigated in Section 2.2. As in finite element methods, spectral element methods solve the variational form

of Helmholtz�s equation.
Let X be an infinite domain exterior to a closed surface C or an interior domain bounded by C. Given

Z ¼ fv ¼ vR þ ivI : vR 2 H 1ðXÞ; vI 2 H 1ðXÞg, the variational formulation of this problem with homoge-

neous boundary conditions is: find u 2 Z such that

aðu; vÞ ¼ ðf ; vÞ 8v 2 Z; ð6Þ
where the bilinear and linear forms are defined as

aðu; vÞ �
Z

X
ðru � rv� k2uvÞdxdy; ð7Þ

ðf ; vÞ �
Z

X
fvdxdy: ð8Þ

2.2. Boundary conditions

Two boundary conditions are common in acoustics. Dirichlet boundary conditions u ¼ u0 are associ-

ated with known pressure amplitude on a boundary, which occurs on vibrating boundaries. Homogeneous

Neumann boundary conditions ou=on ¼ 0 (n is the unit vector normal to the boundary surface) are as-

sociated with zero velocity on a boundary, which occurs on rigid walls. These two boundary conditions are

straightforward to implement, and do not need additional explanations.

Problems on unbounded domains, appearing in many applications, require special boundary conditions.

For domain-based numerical methods, such as spectral element methods, it is obviously impractical to

solve the problem on the unbounded domain. An artificial boundary is usually introduced by truncating the
unbounded domain. This artificial boundary must be designed in such a way that it does not introduce

reflecting waves, which do not exist in the original unbounded problem. The appropriate radiation con-

dition, Sommerfeld radiation condition, must be satisfied:

lim
rj j!1

rj jðd�1Þ=2 ou
on

�
� iku

�
¼ 0; ð9Þ

where d is the spatial dimension and r is the radial direction.
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A classic approach to non-reflecting boundary conditions is the DtN (Dirichlet to Neumann) method. In

this method the artificial boundary is selected to be of a simple geometric shape, such as a circle in two

dimensions. This simple geometric shape allows an analytical solution to the problem in the exterior do-

main with arbitrary Dirichlet conditions on the artificial boundary. Problems in the interior domain are

then solved numerically, coupled with the analytical solution of the exterior domain. The DtN method is

hard to implement because of constraints on the shape of the artificial boundary and uniqueness concerns

of the external solution.

The method chosen here to create a non-reflecting boundary condition on the artificial boundary is
called PML. This method has gained popularity recently, because it does not have the restrictions of the

DtN method and it is easy to implement. The PML method is based on introducing an absorbing layer,

after the truncated boundary, to absorb outgoing waves and prevent reflection from the artificial boundary.

Based on this method the variational form of Eq. (6) is changed toZ
X
ðrv � Dru � vKxKyuÞdX ¼ ðf ; vÞ 8v 2 H 1; ð10Þ

where

D ¼
Ky

Kx
0

0 Kx
Ky

" #
; ð11Þ

and

Kx ¼ k � irxðxÞ;
Ky ¼ k � iryðyÞ:

ð12Þ

Eq. (10) reduces to the original Eq. (6) when the coefficients rxðxÞ and ryðyÞ are zero, which is true in the

physical domain. The coefficients are defined to vary from zero at the interface (for the ‘‘perfect match’’) to

a maximum value at the truncation of the layer. In layers on the right and left of the main domain ryðyÞ is
zero and similarly, for top and bottom layers, rxðxÞ is zero. In corner absorbing layer regions, both rxðxÞ
and ryðyÞ have non-zero values.
3. The spectral element method

3.1. Spectral element discretization

The spectral element method used herein divides the computational domain X into K disjoint rectangular

elements, Xk, k ¼ 1; . . .K, such that

�XX ¼
[K
k¼1

�XXk: ð13Þ

The discrete space is defined as

ZN ¼ fv ¼ vR þ ivI : vRjXk
2 QNðXkÞ; vIjXk

2 QN ðXkÞ; k ¼ 1; . . . ;Kg \ Z; ð14Þ

where QN denotes the space of polynomials of degree 6N in each spatial direction. Therefore, in

each element, the solution is approximated with Legendre based polynomials of order N in each spatial
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direction. A reference element X̂X ¼ ð�1; 1Þ2 is introduced in practice to simplify the spectral element im-

plementation.

A nodal basis for the reference element is built by Lagrangian basis polynomials associated with a tensor

product grid of Gauss–Labatto–Legendre (GLL) nodes. An example of such a grid is shown in Fig. 1 for a

nineth-order polynomial space. The GLL grid nodes in one direction, �nnj 2 �1; 1½ �, 06 j6N are the roots of

the polynomial

1
�

� x2
� dPNðxÞ

dx
; ð15Þ

where PN ðxÞ is the Legendre polynomial of degree N in �1; 1½ �:

P0ðxÞ ¼ 1;

P1ðxÞ ¼ x;

Pnþ1ðxÞ ¼
2nþ 1

nþ 1
xPnþ1ðxÞ �

n
nþ 1

Pn�1ðxÞ; nP 1:

ð16Þ

The basis functions are constructed as a set of Lagrange interpolants. The Lagrange interpolant associated

with the ith and jth grid node is defined as

hijðn1; n2Þ ¼
YN
m¼0
m6¼i

ðn1 � �nnmÞ
ð�nni � �nnmÞ

YN
n¼0
n6¼j

ðn2 � �nnnÞ
ð�nnj � �nnnÞ

; ð17Þ

where n1 and n2 are the coordinate system in the reference element, and �nni is the coordinate of the ith grid

node in the direction of n1 (�nnj is the coordinate of the jth grid node in the direction of n2). The basis
function, hijðn1; n2Þ, is equal to one on the corresponding grid node, n1 ¼ �nni and n2 ¼ �nnj, and zero on the

other grid nodes. Clearly, an arbitrary function f in the reference element can be uniquely approximated as

a summation of these basis functions over all the grid nodes:
Fig. 1. GLL grid nodes on the reference element used to express the basis for a nineth-order polynomial space.
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f ðn1; n2Þ � fhðn1; n2Þ ¼
XN
j¼0

XN
i¼0

fijhijðn1; n2Þ; ð18Þ

where fhðn1; n2Þ is called the discretized function.

3.2. Numerical integration

The integrands appearing in the SEM integrals involve higher order polynomials. To evaluate these

integrals quadrature rules are more practical. GLL quadrature points, shown in Fig. 1 for a reference el-

ement, are used to numerically evaluate the integrals in the reference element. The advantage of using the

same points both for defining bases functions and for the numerical quadrature is the convenient evaluation

of the Lagrange interpolants at the grid points:

Z 1

�1

Z 1

�1

f ðn1; n2Þdn1dn2 �
XN
j¼0

XN
k¼0

f ð�nnj; �nnkÞxjxk; ð19Þ

where �nnj�s are the GGL quadrature nodes, and xj�s are the weights associated with the quadrature nodes.

The weights are given by

xj ¼
2

NðN þ 1Þ
1

P 2
N ðxÞ

; ð20Þ

where PN ðxÞ is the Legendre polynomial of degree N introduced earlier. Numerical integration based on

GLL quadrature (19) gives the exact value of the integral provided that the function f is a polynomial of

order at most 2N � 1 in each spatial direction. This is the case when numerically integratingZ
Xref :

ðrhij � rhmnÞdn1dn2; ð21Þ

on the reference element, but when calculating the mass matrix by evaluatingZ
Xref :

ðhijhmnÞdn1dn2; ð22Þ

an error is made because ðhijhmnÞ is of order 2N, nevertheless the accuracy of the scheme is maintained [21].

Finally, the numerically calculated mass matrix is a diagonal matrix which is a direct consequence of the

fact that the Lagrangian interpolants and the quadrature are both based on the GLL grid nodes.

The spatial discretization of a boundary value problem leads to a system of linear algebraic equations.

The assembly of the resulting complex system of equations is described in the next section.

3.3. Resulting matrices

Since problems addressed can be complex problems, both the real part and the imaginary part of the

solution must be solved. The discretization of the problem leads to a system of linear algebraic equations:

Au ¼ F : ð23Þ

Here A, u and F have complex values:

ðAR þ iAIÞ � ðu þ iu Þ ¼ FR þ iFI: ð24Þ
R I
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Therefore we have a block system of equations:

ARuR � AIuI ¼ FR;

AIuR þ ARuI ¼ FI: ð25Þ

This means that the system to be solved is the following block system

AR �AI

AI AR

� �
uR

uI

� �
¼ FR

FI

� �
ð26Þ

which can also be written as a symmetric system:

AR AI

AI �AR

� �
uR

�uI

� �
¼ FR

FI

� �
: ð27Þ

This linear system is sparse, symmetric, indefinite and relatively ill-conditioned. Preconditioning of this

system is required to efficiently solve the system iteratively. This important aspect of the solution process is

not studied here as only commonly available preconditioners are used. Other preconditioners based on

finite element discretization [22] or additive Schwarz method [23] will be studied in future work. Therefore,

the system (27) is solved using a conjugate-gradient iterative solver with ILU, SSOR, or Jacobi precon-

ditioners [24], depending on the problem.
In the next section this method is applied to some sample problems.
4. Numerical results

This section reports the results of three sample problems solved with the spectral element method.

Problems with different boundary conditions are chosen to validate the code. These problems also have

analytical solutions. Consequently, the comparison of the numerical results and the analytical solution is
discussed. In the next section, the spectral element method is also compared with a second-order finite

element method to investigate its efficiency.

4.1. Green’s function problem

The first problem is called Green�s function on a rectangular domain. In this problem the performance

and the accuracy of the method for a problem with a point source function and homogeneous Dirichlet

boundary conditions are examined.

The problem of finding Green�s function u within a rectangular domain X with homogeneous Dirichlet

boundary conditions is described by

r2uðx; yÞ þ k2uðx; yÞ ¼ �dðx� x0; y � y0Þ in X; ð28Þ
uð0; yÞ ¼ uðLx; yÞ ¼ uðx; 0Þ ¼ uðx; LyÞ ¼ 0: ð29Þ

The problem is solved for Lx ¼ Ly ¼ 1 and x0 ¼ y0 ¼ 0:8. Fig. 2 shows the result for k ¼ 10p=3 using the

spectral element method with N ¼ 1 on a mesh 40� 40. This first-order approximation is mainly used to

plot the solution. It shows standing waves in the domain created by a point source.

The analytical solution of this problem is a series of eigenfunctions wij with amplitudes aij which are

dependent on the wave number k:



Fig. 2. Solution to the Green�s function problem, k ¼ 10p=3, mesh 40� 40.
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uðx; yÞ ¼
X1
i¼1

X1
j¼1

aijwijðx; yÞ; ð30Þ

where

wijðx; yÞ ¼ sin ip
x
Lx

� �
sin jp

y
Ly

� �
; ð31Þ
aij ¼
�4wijðx0; y0Þ

LxLyðk2 � ip=Lxð Þ2 � jp=Ly

� �2Þ : ð32Þ

Note that the solution does not have an imaginary part, therefore only standing waves are present in the

domain.

In Fig. 3, the numerical solution for a higher wave number, k ¼ 40p=3, is compared with the exact

solution, which shows a very good agreement. Here the mesh is 10� 10 and the order is five, N ¼ 5. We

now discuss the behavior of the solution with respect to the wave number. In Fig. 4(a), the same mesh and
the same order of approximation is applied for an even higher wave number, k ¼ 70p=3 leading to a poor

result. To illustrate the pollution effect, the number of elements per wavelength is kept constant by dividing

both the wave number and the number of elements in each direction by two and a slice of the solution is

presented in Fig. 4(b). As noticed, a better agreement between the numerical solution and the exact solution

is observed and reported in Table 1. This shows that the solution accuracy is highly sensitive to the wave

number and not only to the number of elements per wavelength. Table 2 reports a comparison between the

spectral element method with the second-order Galerkin finite element method. In this example, again the

number of elements per wavelength is kept constant. The results show that while the error of the second-



Fig. 3. Solution to the Green�s function problem, y ¼ 0:2, k ¼ 40p=3, mesh 10� 10, order five.

Fig. 4. Solution to the Green�s function problem, (a) y ¼ 0:2, k ¼ 70p=3, mesh 10� 10, order five, (b) y ¼ 0:2, k ¼ 35p=3, mesh 5� 5,

order five.

Table 1

Comparison of the L2 error for two different wave numbers

k Mesh N L2 norm of the error

70p=3 10� 10 5 3.86e)1
35p=3 5� 5 5 8.58e)2

Table 2

Comparison of the spectral element and the second-order Galerkin finite element

k Mesh N L2 norm of the error k Mesh N L2 norm of the error

18p=3 30� 30 2 4.99e)3 36p=3 60� 60 2 1.06e)2
48p=3 5� 5 9 5.29e)3 96p=3 10� 10 9 5.96e)3
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order finite element increases by increasing the wave number, the error of the spectral element method

remains almost the same. In other words, the pollution effect for high order spectral element is less

dominant compare to the finite element method.

4.2. Closed wave-guide

A standing plane wave within a closed rectangular wave-guide is presented. This problem deals with

non-homogeneous Dirichlet boundary conditions at one end, homogeneous Dirichlet boundary conditions

at the other end and homogeneous Neumann boundary conditions on the two sides of the wave-guide. The

equation describing this problem is:

r2uðx; yÞ þ k2uðx; yÞ ¼ 0 in X; ð33Þ
uð0; yÞ ¼ g0; uðLx; yÞ ¼ 0;
ou
oy

ðx; 0Þ ¼ ou
oy

ðx; LyÞ ¼ 0; ð34Þ

where X is the computational domain of size Lx and Ly . The standing plane wave can be calculated ana-

lytically by

uðx; yÞ ¼ g0
sinðkðLx � xÞÞ

sinðkLxÞ
: ð35Þ

The problem is solved for wave number k ¼ 8p=3 and Lx ¼ Ly ¼ 1. Fig. 5 shows the standing wave on the

wave-guide, using a first-order approximation on a 30� 30 mesh.

To study the accuracy of the spectral element method, the number of grid points is kept fixed while the

order is increased and the number of elements is decreased. Fig. 6 presents the exact solution and different
computed solutions. It is clear that as the order of the approximation increases the solution is more

accurate.
Fig. 5. Standing plane wave in a rectangular wave-guide, k ¼ 8p=3, mesh 30� 30.



Fig. 6. Standing plane wave in a rectangular wave-guide, k ¼ 8p=3, y ¼ 0:5.
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4.3. Semi-infinite wave-guide

Homogeneous and non-homogeneous Dirichlet and Neumann boundary conditions have been examined

on simple geometries. In the last problem the PML method for treating an open boundary in a semi-infinite

wave-guide is examined. The physical domain X is a rectangular wave-guide closed on two sides and at one

end. The other end of the wave-guide is extended to infinity. The Helmholtz�s equation has no source term

hence the equation can be written as

r2uðx; yÞ þ k2uðx; yÞ ¼ 0 in X: ð36Þ
The boundary conditions are

uð0; yÞ ¼ c1 sinðl1yÞ þ c2 sinðl2yÞ; 0 < y < p; ð37Þ
uðx; 0Þ ¼ uðx; 1Þ ¼ 0; 0 < x < 1: ð38Þ

The exact solution to this problem is

uðx; yÞ ¼ c1 exp
�
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l21

q
x
�
sinðl1yÞ þ c2 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � k2

q
x
�
sinðl2yÞ: ð39Þ

It should be noted that the complex solution to uðx; yÞ in this problem is associated with traveling waves as

opposed to standing waves as in the previous problems.

The solution to this problem for 0 < x6 5p is sought. The domain is therefore truncated at x ¼ 5p. To
prevent the reflection of the outgoing waves back into the domain, an artificial absorbing layer is added after
the truncated boundary, 5p < x6 6p. Due to the PMLmethod, the variational weak form (10) instead of the

original variational formulation of the problem (6) is solved. Here the parameters of the PML method are

ryðyÞ ¼ 0; rxðxÞ ¼ 0;

0 < x < 5p;

ð40Þ
rxðxÞ ¼ 40
x� 5p

p

� �2

; 5p6 x6 6p: ð41Þ
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The problem is solved for k ¼ 1:25, l1 ¼ 1, l2 ¼ 2, c1 ¼ 2 and c2 ¼ 1, using a 6� 1 mesh with eighth-order

approximation. The real and imaginary results on the computation domain are presented in Figs. 7 and 8.

In Figs. 9 and 10, numerical results are compared with analytical solutions for both real and imaginary

solutions. From these figures, note that the absorbing layer absorbs the waves and the amplitude of the

waves goes to zero in the absorbing layer.
5. Efficiency investigation

To investigate the efficiency of the spectral element method, its spatial L2 norm convergence is compared

with second-order finite element method (N ¼ 2), which has been considered as a classic finite element

method. Furthermore, the computational cost, i.e., the total CPU time, of the spectral element method is

compared with the second-order finite element method.
Fig. 7. Semi-infinite wave-guide solution, real part.

Fig. 8. Semi-infinite wave-guide solution, imaginary part.



Fig. 9. Semi-infinite wave-guide solution, real part, y ¼ 0:5p.

Fig. 10. Semi-infinite wave-guide solution, imaginary part, y ¼ 0:5p.
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The L2 norm of the error is defined as

ek k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ðucomputed � uexactÞ

2
dxdy

s
: ð42Þ

In Fig. 11, the error in the L2 norm for Green�s function problem is plotted against the degrees of

freedom, i.e., number of the grid points. The first curve shows the spatial convergence due to increasing

the number of elements and keeping the order, N, constant, h-extension. In the second curve, the number
of the elements is kept constant and the order, N, is increased to achieve higher accuracy, p-extension.

The curves are presented in log–log and semi-log scales. Figs. 12 and 13 show the same comparison for

the closed wave-guide and for the semi-infinite wave-guide. These comparisons clearly show the advantage

of the spectral element methods in terms of exponential convergence rate as dictated by theory for smooth

solutions.
Fig. 12. Spatial convergence for standing plane wave in a closed wave-guide, k ¼ 100p=3: (a) log–log scale, (b) semi-log scale.

Fig. 11. Spatial convergence for Green�s function problem, k ¼ 20p=3: (a) log–log scale, (b) semi-log scale.



Fig. 13. Spatial convergence for semi-infinite wave-guide, k ¼ 1:25: (a) log–log scale, (b) semi-log scale.
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Clearly, the number of degrees of freedom is not the only parameter determining the numerical cost of

solving a problem when iterative solvers are used. The sparseness and condition number of the matrix are

other influential parameters. Higher order elements lead to less sparse and therefore harder to solve ma-

trices, so it is important to examine not only the size of the matrix but also its properties. Obviously,

preconditioners play a huge role for the computation cost.
In this work, commonly available preconditioners are used with the conjugate-gradient iterative solver.

The iterative solver and the preconditioners are from LASPack library [24]. For Green�s function the SSOR

preconditioner is used and for the closed wave guide the Jacobi preconditioner is used. The system asso-

ciated with the semi-infinite wave-guide is preconditioned with an ILU(0) preconditioner.

In LASPack the iterative solver stops if the residual satisfies the condition:
Fig. 14. CPU time for Green�s function problem.



126 O.Z. Mehdizadeh, M. Paraschivoiu / Journal of Computational Physics 189 (2003) 111–129
rk k2 ¼ Fk � Auk2 6 e Fk k2; ð43Þ

where e is the accuracy defined by LASPack termination control, and is set to 10�8.

Furthermore, the assembling cost plays an important role in the computational cost, depending on the

problem. So in order to show the efficiency of the spectral element method in terms of the computational

cost, the comparison of the CPU time is necessary. In this regard, in Figs. 14–16 the total computational

cost is compared for the two methods.

These results clearly show that not only the spectral element method leads to smaller system to be solved,

but also the total CPU time for the spectral element method is much less than the total CPU time for the

finite element method for same accuracy. Furthermore, Fig. 16 shows that the spectral element method is
more robust for PML in comparison to the finite element method.
Fig. 16. CPU time for semi-infinite wave-guide.

Fig. 15. CPU time for standing plane wave in a closed wave-guide.



Table 3

Preconditioned conjugate gradient iterations for Green�s function problem, e ¼ 10�8; k ¼ 20p=3

h-Extension p-Extension

Degrees of freedom Number of iterations Degrees of freedom Number of iterations

361 86 361 86

1521 111 1521 126

3481 154 2401 153

6241 198 4761 216

9801 245

Table 4

Preconditioned conjugate gradient iterations for a closed wave-guide, e ¼ 10�8; k ¼ 100p=3

h-Extension p-Extension

Degrees of freedom Number of iterations Degrees of freedom Number of iterations

2499 137 2499 137

9999 167 5624 135

39,999 330 9999 201

89,999 493 15,624 268

159,999 655 22,499 341

249,999 818 30,624 471

359,999 1501 39,999 538

50,624 574

Table 5

Preconditioned conjugate gradient iterations for semi-infinite wave-guide, e ¼ 10�8; k ¼ 1:25

h-Extension p-Extension

Degrees of freedom Number of iterations Degrees of freedom Number of iterations

138 33 138 33

658 67 658 80

2850 482 1562 147

4522 1308 2158 175

6578 14,041 2850 404

9018 9241 3638 597

11,842 14,737
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Finally, the number of iterations of the solver, preconditioned conjugate gradient, are reported in Tables

3–5 for the three problems addressed. Clearly, there is a need to develop appropriate preconditioners for the

linear systems arising from Helmholtz problem.
6. Conclusion

It is known that Galerkin finite element solution to Helmholtz�s equation is computationally expensive,

and needs large computation resources, for high wave numbers, due to the pollution effect. The results of

this work show that the spectral element method, as an alternative to finite element methods, is more ef-

ficient for solving two-dimensional Helmholtz�s equation in terms of both memory and computational cost,



128 O.Z. Mehdizadeh, M. Paraschivoiu / Journal of Computational Physics 189 (2003) 111–129
i.e., it offers exponential convergence and less pollution. It also offers the same advantages of finite element

methods. In other words, it has the potential for addressing problems in geometrically complex and non-

homogeneous domains, which is usually the case for the real acoustic problems such as acoustic field in a

silencer. Nevertheless more work is required to develop appropriate preconditioners for the linear system

arising from the discretization of the weak form of Helmholtz�s equation. This paper also shows that the

PML boundary conditions are applicable for the spectral element method and preserve the exponential

convergence rate. Therefore, this method can also address unbounded problems.
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